A new discretization scheme for one dimensional stochastic differential equations using time change method
نویسندگان
چکیده
We propose a new numerical method for one dimensional stochastic differential equations (SDEs). The main idea of this is based on representation weak solution an SDE using time-changed Brownian motion, which dates back to Doeblin (1940). In cases where the diffusion coefficient bounded and β-Holder continuous with 0<β≤1, we provide rate strong convergence. An advantage our approach that approximate solution, enables us treat SDEs no solution. Our scheme first achieve convergence case 0<β<1∕2.
منابع مشابه
A NEW ANALYTICAL METHOD FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS
In the literature, several numerical methods are proposed for solvingnth-order fuzzy linear differential equations. However, till now there areonly two analytical methods for the same. In this paper, the fuzzy Kolmogorov'sdifferential equations, obtained with the help of fuzzy Markov modelof piston manufacturing system, are solved by one of these analytical methodsand illustrated that the obtai...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملA new technique for solving Fredholm integro-differential equations using the reproducing kernel method
This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.Th...
متن کاملA Genetic Programming-based Scheme for Solving Fuzzy Differential Equations
This paper deals with a new approach for solving fuzzy differential equations based on genetic programming. This method produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Furthermore, the numerical results reveal the potential of the proposed appr...
متن کاملThe Optimal Discretization of Stochastic Differential Equations
We study pathwise approximation of scalar stochastic differential equations. The mean squared L2-error and the expected number n of evaluations of the driving Brownian motion are used for the comparison of arbitrary methods. We introduce an adaptive discretization that reflects the local properties of every single trajectory. The corresponding error tends to zero like c ·n−1/2, where c is the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2021
ISSN: ['1083-589X']
DOI: https://doi.org/10.1214/21-ecp420